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Abstract

Gait is an emergent biometric aimed essentially to recognise people by the way they walk.
Its advantages are that it is non-invasive and that it is less likely to be obscured since it
appears to be difficult to camouflage, especialy in cases of serious crime. Gait has allied
subjects which lend support to the view that gait has clear potential as a biometric.
Essentially, we use computer vision to find people and to derive a gait signature from a
sequence of images. The majority of current approaches derive motion characteristics, which
are then used for recognition. Early results by these studies confirm that there is a rich
potential in gait for recognition. Only continued development in technique and in analysis
will confirm whether its performance can match that of other biometrics.

1. Introduction

In many applications of person identification many established biometrics are obscured: the face may be
hidden or at too coarse a resolution; the ears cannot be seen. However, people need to walk, so their gait is
usually apparent. This motivates using gait as a biometric and it has recently attracted interest’. The Oxford
Dictionary definition of gait is: “Manner of walking, bearing or carriage as one walks’ suggesting that
studies can concentrate on different facets of a person’s walk. Apart from perceptibility, another attraction
of using gait isthat its motion can be hard to disguise.
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Fig. 1 Hip Rotation

Clearly there is a view that gait can be used to recognise individuals. That view is not new: Shakespeare
used many adjectives to describe gait and in The Tempest [Act 4 Scene 1], Ceres observes “High'st Queen
of state, Great Juno comes; | know her by her gait”, which suggests that he considered gait (or the cadence
of footfalls) to be unique to the individual. While the examination of gait as a biometric is promising, there
are limits to the utility of gait information. Most obviously, gait can be obscured by clothing such as skirts,
and can be affected both by footwear and by the walking surface. The physical condition of a walker can
also alter their gait. For example, pregnancy, fatigue, injury, and drunkenness will all bring about changes
to the normal pattern of walking. Another apparent limitation to automated gait recognition is computing
power but the continuing advance of processing power will mitigate this. Nevertheless, recent research
conducted across alied disciplines including medicine, psychology and computer vision has underlined the
wealth of information available from gait, and reaffirms its potential as a cue to identification.

2. Allied Research

2.1 Medical Studies

The aim of medical research has been to classify the components of gait for the treatment of patients with
gait problems. Standard movement patterns were produced (2) for normal walkers, by attaching markers to
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the joints of each individual. These patterns then served as the baseline for examination of the walking
pattern of patients with gait abnormalities. In all, there appear to be twenty distinct gait components, some
of which can be measured only from an overhead view of the subject. Among the most informative of these
were the pelvic and thorax rotations (see Figure 1), ankle rotations, and pelvic tipping which, together with
measures of spatial displacement revealed stability across repeated trials and differentiation across different
walkers (2). From this work, Murray considered that gait could usefully be viewed as a “total walking
cycle”, or as a periodic signal. Normal individuals showed a regular and systematic deviation from this
periodic signal, while abnormal walking patterns showed a more extreme deviation from the standard
pattern. The underlying principle, though, is that when the total gait cycle is considered, individual
differences do emerge and thus gait can be considered ‘unique’. While the purpose of medical studies has
been in the analysis of gait across populations, the study of gait by psychologists has focused much more
clearly on gait as a biometric, and it is to this literature that we now turn.

2.2 Psychology of Gait

In the earliest studies of gait perception® participants were presented with images produced from points
of light attached to body joints. This technique generated what have become called ‘point-light displays
which allowed researchers to investigate the perception of biological motion without the influence of
biological form. When the points were viewed in static images, they were perceived to form a random
arrangement such as star constellations or lights on a Christmas tree. However, when the point light
displays were animated, they were immediately perceived as representing a human in motion. Later work
confirmed that a human figure can be perceived very easily from such moving displays and more recently* it
has been shown that point light displays are sufficient for the discrimination of different types of maotion
such as jumping and dancing. As such, the human visual system appears adept at perceiving motion and
further studies have shown how perceivers can even recognise gender and identity from gait. One recent
study®, using video as well as point light displays, has shown that humans can indeed recognise people by
their gait, and can learn gait patterns for the purposes of recognition. The study confirmed that, even under
adverse viewing conditions, individual differences in gait could <till be perceived. Consequently,
psychology, too, presents us with a strong case for considering gait as a synchronous, symmetric pattern of
movement from which individual difference can be perceived.

2.3 Modelling the Human Body and its Motion

Many studies have considered human motion extraction and tracking, though not for biometric purposes.
The human body is an extremely complex object, being highly articulated and capable of a variety of
motions. Stick figure models and volumetric models are commonly used for three-dimensional tracking, and
the ribbon and blob models are less popular. There is an extensive literature of models and tracking’.

(a) Model (b) Extraction from Single Frame

Figure 2 Extracting a Moving Articulated Object

These techniques appear not to have benefited from evidence gathering. A new velocity Hough
Transform (HT) can find moving objects by evidence gathering. This accrues the HT’ s known advantages of
good performance in noise and/or occlusion. The velocity HT has been extended to locate moving
articulated objects®, and the modelling strategy is illustrated in Figure 2(a). The position of the hip (Ix,ly)
can be considered as having a negligible vertical motion and a constant horizontal velocity vi, with
oscillatory influence due to the rotation of the hip about the vertical axis. Accordingly, a model of the
horizontal velocity of the hipis



Vx = le + le COS(CUan +¢Ix) (1)
The two legs can be modelled as apair of articulated lines whose internal angle A varies as
A= B, Sn(@,Tt+,) )

The result of extracting the human from an image sequence isillustrated in Figure 2(b). This can be used to
good effect to find a moving pair of articulated lines in an image sequence, with the HT’ s inbuilt advantages
in terms of performance in noise and in occlusion (i.e., when walking behind a lamppost). In fact, it affords
an appropriate initialisation for statistical approaches, since it can isolate precisely the region of interest.

3. Automatic Gait Recognition

3.1 Current Approaches

In what was perhaps the earliest approach to automatic recognition by gait, the gait signature was derived
from the spatio-temporal pattern of a walking person’. Here, in XT dimensions (translation and time), the
motions of the head and of the legs have different patterns. These patterns were processed to determine the
body motion’s bounding contours and then a five stick model was fitted. The signature was derived by
normalising the fitted model for velocity and then by using linear interpolation to derive normalised gait
vectors. This was then applied to a database of 26 sequences of five different subjects, taken at different
times during the day. Depending on the values used for the weighting factors in a Euclidean distance metric,
the classification rate varied from nearly 60% to just over 80%, equivalent to human performance and a
promising start indeed.

Later, optical flow was used to derive a gait signature®, again automatically by computer vision, aiming
not to use a model of a human walking but more to analyse motion content for recognition purposes. The
motion features were defined as the variation of the first- and second-order moments of the dense optical
flow, the ‘shape of maotion’. Then, the periodic structure of the features was described by the relative phase
of the spectral components, referenced to one of the co-ordinates of the centroid. Recognition rates
exceeding 90% were reported on a database of seven subjects, the rate depending on the number and type of
motion feature used. Again, an encouraging result.

Another approach was aimed more at generic object-motion characterisation®, using gait as an exemplar
of their approach. The approach was similar in function to spatio-temporal image correlation, but used the
parametric eigenspace approach to reduce computational requirement and to increase robustness. The
approach first derived body silhouettes by subtracting adjacent images, with further processing to reduce
noise. Then, the images were projected into eigenspace, a well-established approach in automatic face
recognition. Eigenvalue decomposition was then performed on the sequence of silhouettes where the order
of the eigenvectors corresponds to frequency content. Recognition from a database of 10 sequences of seven
subjects showed classification rates of 100% for 16 eigenvectors and 88% for eight, compared with 100%
for the (computationally much more demanding) spatio-temporal image correlation approach, and with
robustness to noise. We now consider two other recent approaches to automatic gait recognition, in detail.

3.2 Automatic Gait Recognition by Statistical Measurement

Eigenspace transformation (EST) based on Principal Component Analysis (PCA) or Karhunen-Loeve
Transform is well known to offer a potent metric in automatic face recognition and in gait analysis, but
without using data analysis to increase classification capability. PCA based on the global covariance matrix
of the full set of image data is not sensitive to class structure in the data. Linear Discriminant Analysis
(LDA), aso called Canonical Analysis (CA), can be used to optimise the class separability of different face
classes and improve the classification performance. The features are obtained by maximising between-class
variation whilst minimising within-class variation. Unfortunately, this approach has a high computational
cost. Moreover, the within-class covariance matrix obtained via CA aone may be singular. A new approach
combines canonical space transformation based on CA with eigenspace transformation, for gait analysis'®*.
Combining EST with canonica space transformation (CST) reduces the data dimensionality and optimises
the class separability of different gait sequences, simultaneously. This gives a ‘statistical’ approach to
automatic gait recognition wherein the image sequence is described as awhole, neither by a model- nor by a
motion-based approach, but by one which describes the motion content.



Given c training classes to be learnt, where each class represents a walking sequence of a single subject,
X'ij isthe j-th image (of n pixels) in classi and N; is the number of images in i-th class. The total number of
training imagesis

Ny =N, + N, +....+N; (3)

and the training set is represented by [X'l,l- X X .,x'C,NC] . First, the brightness of each sample
image is normalised and the mean my is used to form an nx N; matrix X

X=[X1,1‘mx’---’X1,N1 “My,e X, —mx] (4)

EST uses the eigenvalues and eigenvectors, generated by the data covariance matrix derived from the
product XX, to rotate the original data co-ordinates along the direction of maximum variance. Calculating
the eigenvalues and eigenvectors of the nx n matrix XX' is computationally intractable for typical image
sizes. Based on singular value decomposition, we can compute the eigenvalues of XX where the matrix size
is N, x N, and is much smaller than the nx n matrix. The eigenvectors of XX are used as an orthogonal

basis to span a new vector space. Each image can be projected to a single point in this space. According to
PCA, the image data can be approximated by taking only the largest eigenvalues and their associated
eigenvectors. This partial set of k eigenvectors spans an eigenspace where the points y;; are the projections
of the original images x;; by the eigenspace transformation matrix, [ey,...,&], as

Yii =[el7"'ek]TXi,j (5)

After this transformation, each original image can be approximated by the linear combination of these
eigenvectors. In CST, the classes of the transformed vectors resulting from eigenspace calculation are used
to calculate a scatter matrix S, a within-class matrix S, and a between class matrix S, which reflect the
dispersion, the variance and the variance of the difference, respectively. The objective of CST isto minimise
Sy and to maximise S,, simultaneously. This is achieved by minimising the generalised Fisher linear
discriminant function J, where

J(W)=WTS,W/W'S, W (6)
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(a) Template (b) Eigengait (c) Canonical Space For Five Subjects
Figure 3 Statistical Gait Recognition: Template and Processed Data

The ratio of the variances is maximised by the selection of the feature W that minimises its rate of change.
Supposing W’ to be the optimal solution and that w’; be its column vector which is a generalised eigenvector
and corresponds to the i-th largest eigenvector A;, then

Sw; =AS,w; 7)

After the generalised eigenvalue equation is solved, we obtain a set of eigenvalues and eigenvectors that
span the canonical space where the classes are much better separated and the clusters are much smaller.

In application, this analysis is applied to human silhouettes derived by subtracting the background from
the image and then thresholding the result. Fig. 3(a) shows a human template from the original sequence and
Fig. 3(b) shows one of the eigenvectors extracted from the sequence of moving templates. The trajectoriesin
eigenspace overlap and their centroids are very close together. After CST the trajectories are much better
separated and with lower individual variance asin Fig. 3(c) (though for three dimensions only). Recognition
from the canonical space is accomplished using the distance between the accumulated centre to each
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centroid. On five sequences of five people from the database of the Visual Computing Group, University of
Cdlifornia, San Diego, an 85 % classification rate was achieved by CST alone whereas 100% was achieved
with combined EST and CST (as evidenced by the cluster size and separation).

3.3 Automatic Gait Recognition by Feature-Based Measurement

An alternative approach to collecting the motion information in an image sequence is to find feature(s) and
describe their motion. Gait signatures have been derived from frequency components of the variation in
inclination of the thigh, as extracted by computer vision techniques™. A bi-pendular model is used as the leg
motion is periodic and each part of the leg (upper and lower) appears to have pendulum-like motion. Fourier
theory allows periodic signals to be represented by spectra - the gait motion of the lower limbs can be
described in such a way. The model of legs for gait motion allows these rotation patterns to be treated as
periodic signals and so Fourier Transform techniques can be used to obtain a spectrum. The spectra of
different subjects can then be compared for distinctive, or unique, characteristics. Earlier, the spectrum of the
variation of the thigh was derived by edge detection, followed by line extraction, both derived from separate
frames'. Then, missing data were interpolated prior to derivation of the biometric signature.
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(a) Frame of Seguence with Extracted Result (b) Spectral Signatures for Two Subjects
Figure 4 Example of Model-Based Recognition (a) Original and (b) Signature

The approach has been superseded by one which generates the signature direct from edge detected
versions of the image sequence®. This again uses the Velocity HT to collect data over the entire sequence of
images, but extracts the signature rather than just locating an articulated subject. The horizontal motion of
the pelvisis modelled similar to Egn. 1 whilst the inclination of the thighsis expressed by a Fourier series as

ot) =a,+2) " [b, cos(kayt) - ¢, sin(kaot] (8)

This describes the variation in the angle shown in Fig. 1(a). To avoid the high dimensional accumulator
space consistent with the large number of parametersin Eqns. 1 and 8, the velocity HT is applied by way of a
genetic algorithm. A single frame of a sequence with the result superimposed (i.e. the line calculated for that
frame by the extracted parameters) is shown in Fig. 4(a). The resulting descriptors are used to calculate the
transform data. The magnitude spectrum drops to near zero above the fifth harmonic, again agreeing with
earlier (medical) work. The phase spectra are much more different than the magnitude spectra but some
phase components carry little information since their respective magnitude component is very small. As
such, the phase datais weighted by the magnitude data to reduce contributions where the magnitude is small.
This gives the signature, as shown in Fig. 4(b) for two subjects.

The k-nearest neighbour rule was then used to classify the transform data using the ‘leave one out’ rule,
for k = 3 and for k = 1. Four video sequences were acquired for each of ten subjects. The correct
classification rates (CCR) are summarised in Table 1 which gives analysis for classification by magnitude
spectra alone, and for multiplying the magnitude spectra by the phase, both for two values of k. Note that the
magnitude component of the FT is time-shift invariant; it will retain its spectral envelope regardless of
where in time the FT is performed. The phase component does not share this characteristic, and a time shift
in the signal will change the shape of the phase envelope. Accordingly, the rotation patterns were aligned to
start at the same point, to alow phase comparison. This is because the magnitude plots do not confer
discriminatory ability whereas the phase plots do. The multiplication appears reasonable, since gait is not
characterised by extent of flexion alone, but is controlled by musculature which in turn controls the way the
limbs move. Accordingly, there is physical constraint on the way we move our limbs. However, we cannot
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use phase alone, since some of the phase components occur at frequencies for which the magnitude
component is too low to be of consequence. By multiplication of the spectra, we retain the phase for
significant magnitude components. Clearly, in this analysis, using phase-weighted magnitude spectra gives a
much better classification rate (100%) than use of magnitude spectra alone (80%), for both values of k.
No. of Nearest Neighbours Magnitude CCR Phase x Magnitude CCR
k=1 80 % 100 %
k=3 80 % 100 %

Table 1. Model-Based Classification Per for mance.

4. Conclusions

Throughout this article, we have argued for the use of gait as a biometric. Its use is attractive
because it is non-invasive and less likely to be disguised than other biometrics. Allied studies in physiology
and psychology suggest that unique gait patterns can be modelled and recognised, and in computer vision, a
number of approaches have modelled the body and tracked it through image sequences. Of more direct
importance to the field of biometrics are the recent developments suggesting that computer vision can be
used to recognise people by their gait. The majority of current approaches are motion-based, combining the
image sequence by its motion or by statistical analysis. Only one technique is feature-based and its results
can clearly be identified with the data from which they were derived.

The research has focused more on development of new techniques for the task, but results suggest that
further development is certainly warranted, both in application and development. Clearly, gait would benefit
from an established database on which to assess new developments both in recognition procedure and in
technique. As such, future work will strengthen and develop methodology and will establish more precisely
the results that can be achieved by this new biometric.
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